

Kern River Groundwater Sustainability Agency (KRGSA)

Water Budget Workshop No. 1 Data and Approach for the KRGSA

June 7, 2018

GSP Requirements for Basin Setting

- ► Hydrogeologic Conceptual Model (HCM) and Groundwater (GW) Conditions discussed at April Board meeting
- ► Today Water Budget workshop on data and approach
- Ongoing work with agencies to reconcile data sources and avoid "double counting"

GSP Requirements

Focus on current and historical budgets first

Must cover entire subbasin

Water Budgets BMP Example

- Separate water budgets for groundwater and surface water
- Combine for GSA and Subbasin budgets
- Graphical representation required by regulations

KRGSA Water Budgets - Purpose

KRGSA Water Budgets – KRGSA GSP

- Develop Water Budgets for KRGSA agencies (without subsurface inflows and outflows)
- Scale up to a KRGSA Water Budget for the GSP

Subbasin Water Budgets – Groundwater Model

- Incorporate water budgets into the Subbasin groundwater model
- Combine with other subbasin water budget data
- Use model for Subbasin Water Budget and subsurface inflows and outflows

Water Budget Study Periods

- 21-year Study Period for Model
 - 1995 2015 (Water Years)
 - Average hydrologic period
 - Banking input from 1978 to account for banked water in storage
- 23-year data collection period for GSP
 - 1995 2017 (Water Years)
 - Incorporates more current information for GSP sustainability analysis

KRGSA Water Budgets - Approach

- Kern County water managed in real time for optimal use
- Provides flexibility and optimization of water but results in complex accounting of physical molecules
 - Focus on the physical system
 - Where does the "wet water" go? (not paper exchanges)
 - Water budget process follows the molecules – does not assign "ownership" of the water
 - Prevent "double-counting"

KRGSA Water Budgets - Approach

- Conduct analysis at the agency level
 - KCWA Improvement District No. 4 (ID4)
 - City of Bakersfield Water Resources
 - Kern Delta Water District
- Incorporate additional agencies/areas:
 - Cal Water, Greenfield County WD, East Niles CSD, NOR/OMWC, Berrenda Mesa, Rosedale Ranch ID, Vaughn MWC, Lamont CSD
- Combine for a KRGSA Water Budget
 - Groundwater and Surface Water
 - Document space and time
- How to handle "white areas" within KRGSA?

Smaller Entities water budgets

Larger Agency water budgets

Schematic Diagram ID4

- Monthly inflows to the WPP including SWP, groundwater, and other water sources by exchange
- Recharge in Calloway pool, unlined CVC, and banking projects (supplemental data from KR Annual Reports)
- ID4 recovery pumping
- Private in-district pumping (except City, Cal Water, other agencies)
- Treated surface water deliveries other KRGSA agencies

Schematic Diagram KDWD

- Agricultural ET demand from METRIC ET data
- Diversions and managed recharge from District and KR Annual Reports
- ET demand not met by surface water assumed pumped from groundwater
- Dairies and food processing pump groundwater, consume small amounts, then recirculate for irrigation and recharge

KRGSA
Combined
Water
Budget
Components

KRGSA Data for Subbasin Modeling

- Data combined by element
- ► To the extent feasible, honor monthly data by location
- Recharge and recovery pumping input directly
- Municipal pumping input directly by well
- Surface water for irrigation applied directly by area
- Model meets un-met agriculture demand (METRIC ET) with groundwater

Use Model for Subsurface Flow

- Dynamic conditions around GSA boundaries in subbasin
- Model is the best tool for quantifying subsurface flows
- Water budgets will be completed as Hydrologic Inventories until model results are available
- Subsurface flows may not be needed for sustainability criteria

Groundwater Elevation Contours 1998

- Subsurface flows around KRGSA during wet periods are characterized by:
 - Inflows from the northeast (Kern River)
 - Outflows to the east and north
 - Inflows from the west
 - Some mounding along southern boundary

Groundwater Elevation Contours 2015

- Subsurface flows around KRGSA during dry periods:
 - inflows from the northeast
 - outflows elsewhere
- Model will be needed to quantify dynamic flows monthly and over time

Kern River Surface Water Balance

- KRGSA boundaries contain Kern River between Beardsley Diversion Weir and Second Point
- Use/recharge in KRGSA
- Diversions out of the KRGSA (North Kern WSD, Cawelo WD, others)
- Measurement at Second Point
- Currently working to parce water budget at KRGSA boundaries
- Check with model data provided by GEI

Next Steps

- Work with agencies to reconcile data and local water budgets
- Compile for KRGSA
- Format data sets for model

